岭回归案例分析
def linearmodel():
    """
    线性回归对波士顿数据集处理
    :return: None
    """
    
    ld = load_boston()
    x_train,x_test,y_train,y_test = train_test_split(ld.data,ld.target,test_size=0.25)
    
    
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)
    
    std_y  = StandardScaler()
    y_train = std_y.fit_transform(y_train)
    y_test = std_y.transform(y_test)
    
    
    lr = LinearRegression()
    lr.fit(x_train,y_train)
    
    y_lr_predict = lr.predict(x_test)
    y_lr_predict = std_y.inverse_transform(y_lr_predict)
    print("Lr预测值:",y_lr_predict)
    
    sgd = SGDRegressor()
    sgd.fit(x_train,y_train)
    
    y_sgd_predict = sgd.predict(x_test)
    y_sgd_predict = std_y.inverse_transform(y_sgd_predict)
    print("SGD预测值:",y_sgd_predict)
    
    rd = Ridge(alpha=0.01)
    rd.fit(x_train,y_train)
    y_rd_predict = rd.predict(x_test)
    y_rd_predict = std_y.inverse_transform(y_rd_predict)
    print(rd.coef_)
    
    print("lr的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_lr_predict))
    print("SGD的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_sgd_predict))
    print("Ridge的均方误差为:",mean_squared_error(std_y.inverse_transform(y_test),y_rd_predict))
    return None